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LETTER TO THE EDITOR 

Non-perturbatively defined non-local currents for 
restricted conformal 2(2 )  Toda model* 

Huan-xiong Yangt, Kang Lif and Zheng-mao Shengtf 
t Zhejiang Institute of Modern Physics. zhejiang Univenity, Hangzhou 310027, People’s 
Republic of China 
t Depamnent of physics, Hangzhou Univenily. Hangzhou 310028, People’s Republic of China 

Received 2 August 1994 

Abstract. The non-local conserved currents for the reshicted quantum conformal a(2) Toda 
field system an obtained non-perturbatively, and the relations between these results and the 
perturbative BL, are discussed. 

Integrable perturbative theories have played important roles in the development of two- 
dimensional conformal field theories. Since the pioneering work of Zamolodchikov [l], 
much progress has been made in this direction. Up to now, one of the most important 
developments has perhaps been the non-local conserved charge approach advocated by 
Bernard and Leclair 121, which is a way to match the famous quantum inverse scattering 
method. According to the BL approach, the Toda-lie dynamic system under consideration 
should be formulated in the perturbed CF” framework at first, then their hidden quantum 
group symmetries and integrabilities can be revealed by their four non-trivially defined non- 
local conserved charges, as well as the commutation relations satisfied by these charges. So 
far, the BL method hassuccessfully been applied for the SineGordon and &ne Toda 
models [2], conformal sl(2) Toda model 121, Thining model 131, ZMS model [4] and 
various completely integrable perturbation systems of superconformal theories [5-71. The 
factorizable S matrices of these systems have been obtained. 

It is worth stressing that in perturbed m s ,  although the expressions for non-local 
conserved charges are approximate, their commutation algebra and the dependence on 
coupling A are non-perturbative. It is then natural to pursue the non-perturbative versions 
of such non-local conserved charges. Recently, Chang and Rajaraman [8] have made some 
enlightening work on these lines. They have proposed a non-perturbative counterpart of 
the BL approach. Such a non-perturbative approach is mostly successful for the Sine- 
Gordon model, which yields the same charge algebras and the same soliton S-matrix as 
those given by BL except that there are some differences in the expressions of non-local 
conserved charges. The difference of the charges between the two methods comes f” 
the fact that one is perturbative and another is non-perturbative. It is more important and 
more interesting to explore whether the non-local currents and charges in other integrable 
models can also be non-perturbatively defined. We will study the sl(2) Toda model in this 
paper. We find that the CR method can be successfully applied to such a model as well 

* This work is partially suppoMd by the National Nanval Science Foundation of China. 

0305-4470/94/180677+o8s19.50 0 1994 IOP Publishing Ltd L677 



L678 Letter to the Editor 

as the simply laced affine Toda and conformal &ne Toda systems, but this method is not 
suitable for the non-simply-laced affine Toda and non-simply-laced conformal affine Toda 
models. In the next section, we will discuss the canonical quantization of the system. The 
thii section gives out the chiral field transformation of our model. In the fourth section, 
the non-local conserved currents will be defined non-perturbatively. Finally, we will make 
some remarks. 

Canonical quantization 

We consider a conformal s?(Z) Toda model [9]. Its action is 

where p is a real coupling constant. Correspondingly, the equations of motion read 
a,a!+#, + z;,~g(,iP+ - eVs-iP+) = 0 

a,aq + 2iAge’Pn-’fl+ = o 
apasq = o ~~~ 

(2) 

which are an extension of the Sine-Gordon model. 
The quantization of system (I)  needs to set up its Hamiltonian formalism. We regard 

the fields $(x), q ( x )  and $ ( x )  as the canonical coordinates in the phase space and define 
their canonical conjugate momenta, as well as the equal-time Poisson brackets, as 

(3) 

(4) 

1 1 1 
JW = zaom w) = G a o ~ ( ~ )  asn(x) =-sow 4n 

(@(X),XdY)t = I5(x),ndy)l = Ia(X),~rr,Cv)l = S ( x ’  - Y ? .  

H, = i /dxl[;(cao$)z + (a14)2) + (aov)(a0u + (aI~)(a15) +a(eia+ + eip~-ia+)l (5) 

The corresponding canonical Hamiltonian Hc is 

47r 
which is nothing but one of the generators of the P o i n d  transformation. 

generators read 
In (1+1) spacetime the Poincark group is a three-dimensional group. The other 

P = -!-Sdxl[(ao~)(al$) 4 a  + (~MWI 

M = -  / dx’[ xo((ao@)(al+) + ( a m a i m  + X l ( ; ( a o $ ~  + ;(a,@)z 

which stand for the momentum’and the angular momentum of this system, respectively. 
In the canonical quantum theory of system (I), the above canonical variables and their 

functions, turn out to bedome the Hermitian operators in Hilbert space. The canonical 
quantization can be formally realized by making the replacement {A, E )  --f (l/i)[A, E ] ,  
where [ A ,  E ]  is the equal-time commutator. Effecting this substitution in (4), we get 

(6) 
47r 

+ ( a 0 m &  + (aIv)(a&) + Zk(e’#+ + eifln-i*+ 111 

[@(I), X+(Y)]= [t(x), q ( y ) l =  [t l(x), nr(y)l = iS(x’ - Y ’ )  . (7) 
Moreover, (5) and (6) continue to hold in the sense of the normal ordering. To make this 
more transparent, we will give a detailed explanation for normal ordering in the present 
case. As the fields obey coupled nonlinear equations of motion, we cannot expand them 
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in terms of plane waves as in the non-interaction case. Instead, these operators can be 
expanded in terms of their Fourier components at an arbitrary given time xo: 

The operators ax, bk, ck and Q!, bf as weU as c/ appearing in (8) are the corresponding soliton 
annihilation and creation operators, respectively, which satisfy the following commutation 
relations: 

[ a , , Q ~ ] = [ b ~ , b : ] = [ c b , c ~ J = 6 ( k - k ' ) .  (9) 
An operator product is in normal ordered form if all creation operators stand to the left of 
all annihilation operators. 

ChiralJieldr transformation 

To define annd evaluate non-perturbatively the non-local conserved currents for the quantum 
conformal sl(2) Toda model, we feel obliged to decompose the canonical variables into 
their 'chiral' components: 

As a matter of fact, only the pg(x) and ( x )  are genuine chiral operators. The components 
p&), p&), p,,(x) and & ( x )  become chual operators only when A tends to zero, because 

dyl ) a-p+ = -a+,& = -$A - eiPn-iB+ 



Using equation (S), we get 

[ p r ) ( x ) ,  pi-)(y)] = -In[ib(xl - y' - is)] 

[ c r ) ( x ) .  ii$-'(y)] = -In[ - iko(xi - y' + ic)] 

[pi*'(.), $)(y)] = - i h  2 

[ p r ) ( x ) ,  @)(y)] = -iin 

[$)(x),fi?)(y)] = y l n [  Tiko(x' - y l  &'E)] 

[ $ ) ( x ) ,  Q ~ ' ( Y ) ]  = iiz 

[ p r ' ( x ) ,  pr'(y)] = In [ f iko(x' - y' 7 ie)] (17) 

with the remainder vanishing. In (17) the factor ko (h + 0) comes from introducing an 
infrared cut-off koe-Y into the k-integrals when we compute these commutators. with y the 
Euler constant. 

[w.,b(x), w&)] = krfM(i(a-b)(c+d)(x' - y' - ie)"'(x' - y' + 
We can obtain the following useful relations fiom (17): 

-i-(n-b)(c+d) (x 1 - y' + ic)"(xI - y1 - iEIM) 

: exp(iap&) + ib&(x) + icp+(y) + id&(y)) : (18) 
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[wn,b(X), *c,d(Y)] = o  
[@o,b(X), *c,d(Y)l = 0 
and 

A 
i a - w d x )  = - 2R / d y l [ W d x ) ,  Wp.p + @p9p(y)W+-+dy)l 

ia+wO,b(x) = h 2rr /dY'[wo,b(x). Wp.6 4- *@.p(Y)W-p,-#(y)] 

-" 2rr / dY' (X '  - Y')[Wa,b(X), wp,p + W~,p(y)W-p,-p(~)l 

(19) 

a- *a.O = a+ @o,b = 0. 
Furthermore, 

[Wo.b(X),M] =i(xoal +XI%+ f(a"-b'))w~,b(X) 

(20) 

[@a,b(X), MI = i(xoal +X'aO)@a.b(x). 

Having these relations, we can conveniently evaluate the non-local conserved currents of 
this system in a non-perturbative way. 

Non-local conserved currents of this model 

Taking account of 

lim ( ( X I  - y1 - ic)-" - (x'  - yL + ic)-") = 2ni-~(n-1) ( x  I - Y 1 )  
<+O (n - I)! 
where S(") (x )  stands for the nth derivative of S ( x ) ,  we get that, from (18) and (19), 

(21) 
(-1Y-I 

a-w-2/p,o(X) = -- - " a+wp-zlp,p(x) - a-wB-z/p,p(x) - 82-2 2 XI) 2162 A (  8 2 - 2  

a-(w-z/s.o(x)wz/s.o(x)) = -- A ( - 82 ~ + ( ~ p - 2 / 8 . 8 ( x ) w z / p - 8 . - B ( X ) )  

-a-(W,-z/B,p(X)Wz/p-p,-B(x)) + m 2 xz) 

(22)  

and 
- 

2ki Bz-2  - 
(23) 

where 

XI = -Aka Z@'-1) / dy'((x' - y*)' + G ~ ) ~ ' S ( ' ) ( X ~  - y l )  

. ,i(B-Z/B)p,,(x)+ia~,(~)+ipp,(y)tip~(~) : 

+Aki(1-82) / dyl((xl - y')' + cz) (z -pz)8( ' ) (~ ' ,  - ~ ' ) C i $ , ~ ( y )  

. ei(B-Z/8)p~(x)+iS~~ix)-ispr(u)-ip~(y) . 
Xz = fAGzPJ@,,-2/p,p(x) / dy '  ( ( X I  - y1)z + cz)@-p2)8(')(.xr - y l )  

. e i ( 2 / 8 - B ) p e C . ) - i B B ( x ) + i p ~ ( y ) + i S ~ ~ )  . 
+ ~ A Z k ~ 2 ( z + B 2 ) ~ p ~ Z ~ p , p ( ~ )  j dyl ( ( X I  - y')' + E')~'S(')(X' - ~ I ) t i ' ~ , ~ ( y )  

. ~(2 /8 -B)~rD) - iS~~r(x ) - ig~ ,cV) - ip~~~)  : , 
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To ensure (22) and (23) behave as current conservation equations, we have to demand X I  
and X 2  to be vanishing. Upon integrating 6(’)(x1 - y’) by parts, X I  and X z  vanish when the 
powers of (XI - y ’ )  are positive, which leads to a restriction on the values of the coupling 
constant p 

2 ( 2 - 8 2 ) - 1 > 0  2 p 2 - 1 z o .  

That is to say 

X I  = o  
x2 = o  if and only if 4 < p2 < 1 .  

They satisfy the following conservation equations: 

a+j- ( x ) + a - j +  (x) = O  (*) (*) a ?(*) T(+) + J -  ( X ) + a - J +  ( X )  = o .  
These CR currents are defined non-perturbatively, whose expressions differ from the 
corresponding BL currents [2] in the presence of extra terms --hk-ZWp-2/~,&) 
in j$-’(x), -$hk;Z%’p’s_z/p,p(x) in j$+’(x), -$Ak;’Wp,p-2/&) in J -  ( x )  and 

relations of CR charges for conformal z(2) Toda system are always in accordance with 
their counterparts of BL charges, because the commutation relations obeyed by BL charges 
have proved to give non-perturbative results. If pd and j+ were true chual operators, X1 
and Xz would naturally be zero, and then there would be no restriction on the values of 
coupling constant B, as well as the conserved currents would take the same forms as the 
corresponding BL currents. 

In the allowed regions of coupling f c pz < 4, the non-local currents (25H28) are 
Lorentz covariant currents. In terms of (20). we have 

1 

z .  0 <(-) 

-+k; I 2 ”  Wp.p+,&) W-p,zjp-p(.r) in :?(x). Nevertheless, the equal-time commutation 
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Namely the currents (j+ (*I , J -  .(*) ) and (ji*), ji*)) do carry Lorentz weights (2/,9‘, 2 / p 2  -2 )  
and (2  - 2/,9’, -2/f12), respectively. The difference of 2 in their weights between the 
current components is just what is needed to make the current conservation equations (29) 
covariant under Lorentz transformation. 

The charges corresponding to above non-local currents are defined as 

Q- 4 dx  I ( I +  .(-) ( x )  + jL- ) (x) )  Q+ = 1 ( j i + ) ( x )  + jL+)(x) )  

Q- = ; dx  ( I+ ( x )  + j ! + ) ( X ) ) .  
(32) 

1 T ( t )  

J 
Q+ ES f /.*I (jL-)(x) + jL?(x)) s 
Using the fundamental commutation relations (17), one can verify that these charges obey 
the algebra 

QiQi - q 2 Q i Q * = o  

Q+Q- -q-’Q-Q+ =a( l  -q’”’”f 1 
-*Q+Q- = a(l  - q- 11 ) e-Q+ - q 

where 

are two topological charges and 

(33) 

This charge algebra is really in agreement with the analogue given by BL, except the constant 
coefficient ‘a’ (BLs a = -i(A/2n)((,9z)2/(j3z - 2)’)). The difference of the coefficient is 
unimportant, because one can redefine charges Q‘ = m ( k o j 3 2 / x ) Q  so that the charge 
algebra is the same as the BLs. 

Conclusion and remarks 

A set of non-local Lorentz c_ovariant conserved currents have been obtained non- 
perturbatively for the quantum sl(2) Toda model, and these currents exist, only when the 
coupling constant ,9 takes some special values. Our currents differ greatly from BLs which 
are the perturbativedependent and can take any coupling constant ,9, because the chiral 
operators (10) is not a real chiral function of spacetime in our non-perturbation case. But, 
the quantum group algebra satisfied by these conserved charges is the same as that satisfied 
by the BL charges. Moreover, when p limits chiral operators,+ere is no difference between 
our currents and the BL currents. When q -+ 0, i.e. the sI(2) Toda model degenerates 
to the SineGordon model, we naturally get the CRS results, which means our outcome is 
an extension of CRs. We have to point out that the method discussed here is not suitable 
for the non-simply-laced affine Toda and non-simply-laced conformal *ne Toda models, 
because there are only two (not four) conserved charges arising in the non-perturbative 
scheme discussed above for either of such models [lO]. 
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